Copied to
clipboard

?

G = C42.176D6order 192 = 26·3

176th non-split extension by C42 of D6 acting via D6/C3=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C42.176D6, C6.382- (1+4), C4⋊Q814S3, C4⋊C4.125D6, (Q8×Dic3)⋊23C2, (C2×Q8).172D6, Dic3.Q842C2, C422S3.9C2, (C2×C6).275C24, D63Q8.13C2, C12.6Q825C2, C12.138(C4○D4), C4.42(D42S3), (C4×C12).216C22, (C2×C12).108C23, D6⋊C4.154C22, (C6×Q8).142C22, Dic3⋊C4.63C22, C4⋊Dic3.254C22, C22.296(S3×C23), (C22×S3).120C23, C2.39(Q8.15D6), C37(C22.35C24), (C2×Dic3).273C23, (C4×Dic3).164C22, (C3×C4⋊Q8)⋊17C2, C4⋊C4⋊S3.4C2, C6.101(C2×C4○D4), C2.65(C2×D42S3), (S3×C2×C4).148C22, (C3×C4⋊C4).218C22, (C2×C4).221(C22×S3), SmallGroup(192,1290)

Series: Derived Chief Lower central Upper central

C1C2×C6 — C42.176D6
C1C3C6C2×C6C22×S3S3×C2×C4D63Q8 — C42.176D6
C3C2×C6 — C42.176D6

Subgroups: 400 in 192 conjugacy classes, 95 normal (19 characteristic)
C1, C2, C2 [×2], C2, C3, C4 [×2], C4 [×13], C22, C22 [×3], S3, C6, C6 [×2], C2×C4, C2×C4 [×6], C2×C4 [×9], Q8 [×4], C23, Dic3 [×7], C12 [×2], C12 [×6], D6 [×3], C2×C6, C42, C42 [×5], C22⋊C4 [×6], C4⋊C4 [×4], C4⋊C4 [×16], C22×C4, C2×Q8 [×2], C4×S3 [×2], C2×Dic3, C2×Dic3 [×6], C2×C12, C2×C12 [×6], C3×Q8 [×4], C22×S3, C42⋊C2, C4×Q8 [×2], C22⋊Q8 [×2], C42.C2 [×5], C422C2 [×4], C4⋊Q8, C4×Dic3, C4×Dic3 [×4], Dic3⋊C4 [×10], C4⋊Dic3 [×6], D6⋊C4 [×6], C4×C12, C3×C4⋊C4 [×4], S3×C2×C4, C6×Q8 [×2], C22.35C24, C12.6Q8, C422S3, Dic3.Q8 [×4], C4⋊C4⋊S3 [×4], Q8×Dic3 [×2], D63Q8 [×2], C3×C4⋊Q8, C42.176D6

Quotients:
C1, C2 [×15], C22 [×35], S3, C23 [×15], D6 [×7], C4○D4 [×2], C24, C22×S3 [×7], C2×C4○D4, 2- (1+4) [×2], D42S3 [×2], S3×C23, C22.35C24, C2×D42S3, Q8.15D6 [×2], C42.176D6

Generators and relations
 G = < a,b,c,d | a4=b4=1, c6=a2, d2=a2b2, ab=ba, cac-1=dad-1=a-1, cbc-1=b-1, dbd-1=a2b-1, dcd-1=b2c5 >

Smallest permutation representation
On 96 points
Generators in S96
(1 30 7 36)(2 25 8 31)(3 32 9 26)(4 27 10 33)(5 34 11 28)(6 29 12 35)(13 41 19 47)(14 48 20 42)(15 43 21 37)(16 38 22 44)(17 45 23 39)(18 40 24 46)(49 64 55 70)(50 71 56 65)(51 66 57 72)(52 61 58 67)(53 68 59 62)(54 63 60 69)(73 88 79 94)(74 95 80 89)(75 90 81 96)(76 85 82 91)(77 92 83 86)(78 87 84 93)
(1 19 53 94)(2 95 54 20)(3 21 55 96)(4 85 56 22)(5 23 57 86)(6 87 58 24)(7 13 59 88)(8 89 60 14)(9 15 49 90)(10 91 50 16)(11 17 51 92)(12 93 52 18)(25 80 63 42)(26 43 64 81)(27 82 65 44)(28 45 66 83)(29 84 67 46)(30 47 68 73)(31 74 69 48)(32 37 70 75)(33 76 71 38)(34 39 72 77)(35 78 61 40)(36 41 62 79)
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96)
(1 6 59 52)(2 51 60 5)(3 4 49 50)(7 12 53 58)(8 57 54 11)(9 10 55 56)(13 24 94 93)(14 92 95 23)(15 22 96 91)(16 90 85 21)(17 20 86 89)(18 88 87 19)(25 72 69 28)(26 27 70 71)(29 68 61 36)(30 35 62 67)(31 66 63 34)(32 33 64 65)(37 44 81 76)(38 75 82 43)(39 42 83 74)(40 73 84 41)(45 48 77 80)(46 79 78 47)

G:=sub<Sym(96)| (1,30,7,36)(2,25,8,31)(3,32,9,26)(4,27,10,33)(5,34,11,28)(6,29,12,35)(13,41,19,47)(14,48,20,42)(15,43,21,37)(16,38,22,44)(17,45,23,39)(18,40,24,46)(49,64,55,70)(50,71,56,65)(51,66,57,72)(52,61,58,67)(53,68,59,62)(54,63,60,69)(73,88,79,94)(74,95,80,89)(75,90,81,96)(76,85,82,91)(77,92,83,86)(78,87,84,93), (1,19,53,94)(2,95,54,20)(3,21,55,96)(4,85,56,22)(5,23,57,86)(6,87,58,24)(7,13,59,88)(8,89,60,14)(9,15,49,90)(10,91,50,16)(11,17,51,92)(12,93,52,18)(25,80,63,42)(26,43,64,81)(27,82,65,44)(28,45,66,83)(29,84,67,46)(30,47,68,73)(31,74,69,48)(32,37,70,75)(33,76,71,38)(34,39,72,77)(35,78,61,40)(36,41,62,79), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96), (1,6,59,52)(2,51,60,5)(3,4,49,50)(7,12,53,58)(8,57,54,11)(9,10,55,56)(13,24,94,93)(14,92,95,23)(15,22,96,91)(16,90,85,21)(17,20,86,89)(18,88,87,19)(25,72,69,28)(26,27,70,71)(29,68,61,36)(30,35,62,67)(31,66,63,34)(32,33,64,65)(37,44,81,76)(38,75,82,43)(39,42,83,74)(40,73,84,41)(45,48,77,80)(46,79,78,47)>;

G:=Group( (1,30,7,36)(2,25,8,31)(3,32,9,26)(4,27,10,33)(5,34,11,28)(6,29,12,35)(13,41,19,47)(14,48,20,42)(15,43,21,37)(16,38,22,44)(17,45,23,39)(18,40,24,46)(49,64,55,70)(50,71,56,65)(51,66,57,72)(52,61,58,67)(53,68,59,62)(54,63,60,69)(73,88,79,94)(74,95,80,89)(75,90,81,96)(76,85,82,91)(77,92,83,86)(78,87,84,93), (1,19,53,94)(2,95,54,20)(3,21,55,96)(4,85,56,22)(5,23,57,86)(6,87,58,24)(7,13,59,88)(8,89,60,14)(9,15,49,90)(10,91,50,16)(11,17,51,92)(12,93,52,18)(25,80,63,42)(26,43,64,81)(27,82,65,44)(28,45,66,83)(29,84,67,46)(30,47,68,73)(31,74,69,48)(32,37,70,75)(33,76,71,38)(34,39,72,77)(35,78,61,40)(36,41,62,79), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96), (1,6,59,52)(2,51,60,5)(3,4,49,50)(7,12,53,58)(8,57,54,11)(9,10,55,56)(13,24,94,93)(14,92,95,23)(15,22,96,91)(16,90,85,21)(17,20,86,89)(18,88,87,19)(25,72,69,28)(26,27,70,71)(29,68,61,36)(30,35,62,67)(31,66,63,34)(32,33,64,65)(37,44,81,76)(38,75,82,43)(39,42,83,74)(40,73,84,41)(45,48,77,80)(46,79,78,47) );

G=PermutationGroup([(1,30,7,36),(2,25,8,31),(3,32,9,26),(4,27,10,33),(5,34,11,28),(6,29,12,35),(13,41,19,47),(14,48,20,42),(15,43,21,37),(16,38,22,44),(17,45,23,39),(18,40,24,46),(49,64,55,70),(50,71,56,65),(51,66,57,72),(52,61,58,67),(53,68,59,62),(54,63,60,69),(73,88,79,94),(74,95,80,89),(75,90,81,96),(76,85,82,91),(77,92,83,86),(78,87,84,93)], [(1,19,53,94),(2,95,54,20),(3,21,55,96),(4,85,56,22),(5,23,57,86),(6,87,58,24),(7,13,59,88),(8,89,60,14),(9,15,49,90),(10,91,50,16),(11,17,51,92),(12,93,52,18),(25,80,63,42),(26,43,64,81),(27,82,65,44),(28,45,66,83),(29,84,67,46),(30,47,68,73),(31,74,69,48),(32,37,70,75),(33,76,71,38),(34,39,72,77),(35,78,61,40),(36,41,62,79)], [(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96)], [(1,6,59,52),(2,51,60,5),(3,4,49,50),(7,12,53,58),(8,57,54,11),(9,10,55,56),(13,24,94,93),(14,92,95,23),(15,22,96,91),(16,90,85,21),(17,20,86,89),(18,88,87,19),(25,72,69,28),(26,27,70,71),(29,68,61,36),(30,35,62,67),(31,66,63,34),(32,33,64,65),(37,44,81,76),(38,75,82,43),(39,42,83,74),(40,73,84,41),(45,48,77,80),(46,79,78,47)])

Matrix representation G ⊆ GL6(𝔽13)

1200000
0120000
000029
0000411
0011400
009200
,
800000
850000
000010
000001
0012000
0001200
,
1110000
0120000
001604
007794
0004127
009466
,
1220000
1210000
006649
0012709
009466
0004127

G:=sub<GL(6,GF(13))| [12,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,11,9,0,0,0,0,4,2,0,0,2,4,0,0,0,0,9,11,0,0],[8,8,0,0,0,0,0,5,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,1,0,0,0,0,0,0,1,0,0],[1,0,0,0,0,0,11,12,0,0,0,0,0,0,1,7,0,9,0,0,6,7,4,4,0,0,0,9,12,6,0,0,4,4,7,6],[12,12,0,0,0,0,2,1,0,0,0,0,0,0,6,12,9,0,0,0,6,7,4,4,0,0,4,0,6,12,0,0,9,9,6,7] >;

36 conjugacy classes

class 1 2A2B2C2D 3 4A4B4C···4H4I4J4K4L4M···4Q6A6B6C12A···12F12G12H12I12J
order122223444···444444···466612···1212121212
size1111122224···4666612···122224···48888

36 irreducible representations

dim1111111122222444
type++++++++++++--
imageC1C2C2C2C2C2C2C2S3D6D6D6C4○D42- (1+4)D42S3Q8.15D6
kernelC42.176D6C12.6Q8C422S3Dic3.Q8C4⋊C4⋊S3Q8×Dic3D63Q8C3×C4⋊Q8C4⋊Q8C42C4⋊C4C2×Q8C12C6C4C2
# reps1114422111424224

In GAP, Magma, Sage, TeX

C_4^2._{176}D_6
% in TeX

G:=Group("C4^2.176D6");
// GroupNames label

G:=SmallGroup(192,1290);
// by ID

G=gap.SmallGroup(192,1290);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,120,758,219,100,675,297,136,6278]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^4=1,c^6=a^2,d^2=a^2*b^2,a*b=b*a,c*a*c^-1=d*a*d^-1=a^-1,c*b*c^-1=b^-1,d*b*d^-1=a^2*b^-1,d*c*d^-1=b^2*c^5>;
// generators/relations

׿
×
𝔽